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Abstract
This paper reports a new wave phenomenon. We show that in a system
consisting of many electric dipoles, the interaction between dipoles, mediated
by radiated electromagnetic waves, leads to a kind of phase transition in the
system. When the phase transition occurs, all dipoles tend to oscillate in phase,
displaying a global coherent behaviour. It is also found that this feature is
independent of the precise configuration of the dipole system.

1. Introduction

One of the greatest advances in the last century is the achieving of an understanding of how
a system having many interacting elements is manifested and behaves in the presence of
mutual interactions, giving rise to many important phenomena including attenuation of both
classical and quantum waves, the quantum Hall effect, superconductivity, superfluidity, plasma
excitation, and so on [1,2]. The interaction between the constituent bodies not only causes the
properties of the individual entities to change, but under appropriate conditions makes possible
the appearance of a global collective behaviour in the system, thereby provoking a transition
of the system from one state to another. For example, consider a normal metal. The exchange
of phonons between electrons in the metal introduces an attractive force. For sufficiently low
temperatures, this force can overcome the Coulomb repulsion for a range of frequencies, and
thus it becomes a binding force by means of which the electrons in the metal form bound pairs,
a picture first described by Cooper [3]. The pair state is the macroscopic superconductingstate,
and in this state the resistivity disappears. In this way, the metal undergoes a transition from
the normal state with non-zero resistivity to a superconducting state. In the superconducting
state, the global collective behaviour that has emerged is reflected by, for example, the uniform
electrical potential across the system [4]. It has become well known that transitions between
different macroscopic states originate from interactions between individuals in the systems.

The mutual-interaction-induced phase transition in a system consisting of many
constituents has been very much studied in the context of quantum situations [1]. It is now a
well-known fact that in quantum systems, although there are various forms, such a transition
is often due to the wave nature of the constituent entities. It is the multiple interaction and
interference of the waves that lead to the transition. By analogy, this led to the conjecture that
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similar phase transitions may also occur in systems involving classical waves such as acoustic
and electromagnetic waves. Indeed, it was recently pointed out [5] that there is a phase
transition in the propagation of acoustic waves in water with many parallel air-filled cylinders.
It was shown that when the number density of the cylinders exceeds a certain amount, the
propagating wave comes to a complete halt, over a range of acoustic frequencies. Meanwhile,
all cylinders will oscillate completely in phase, exhibiting a globally collective behaviour in
the system. In this paper, we consider another classical system: the system consisting of
many electric dipoles. We show that under appropriate conditions, the interaction between the
electric dipoles, mediated by the radiated electrical fields, can lead to a previously unreported
coherent behaviour; that is, over a range of frequencies a new phase state appears. In the
new phase state, a global collective behaviour arises: namely, all dipoles tend to oscillate
completely in phase, very much in the same way as in the oscillation of air cylinders in water
in response to the incidence of proper acoustic waves [5].

2. Model

Consider a system ofN dipoles. The dipoles are distributed either randomly or periodically in
the space. Their coordinates are�ri with i running from 1 toN. The conceptual layout of the
system is illustrated in figure 1. For brevity, we assume that the centres of these dipoles are
fixed in the space, an assumption valid as long as the motion of the dipoles is slow compared
to the speed of light. Although our formulation includes the case where all dipoles point in
various directions, here for simplicity we only consider the case where all dipoles point in
one direction, assumed to be thez-direction. Further, the rotation of the dipoles is neglected.
In the presence of any stimulation, the dipoles will oscillate and subsequently radiate waves.
The radiated waves will again excite the oscillation of other dipoles. Such a process will be
repeated to establish an infinite recursive pattern of re-excitation and re-radiation. Obviously,
the interaction between dipoles is mediated by the radiated waves. Such a mutual interaction
can be studied using a set of coupled equations.

When a dipole�p oscillates, the electrical wave will be radiated. The radiated field at the
spatial point�r is given as

�E(�r, t) = µ0

4πr
[ r̂ × (r̂ × �p(t ′))]∣∣

t ′=t−r/c
+ �En(�r, t) (1)

where the near field is

�En(t, t) = 1

4πε0

(
3

r3 r̂(r̂ · �p) − �p
r3 +

3

r2c
r̂(r̂ · ..�p) −

..�p
r2c

)

andc is the phase speed of the electrical wave, and ˆr is the unit vector along the direction of�r.
The second term on the right-hand side of equation (1) results from the near-field effect. The
dipoles interact with each other through the radiated electrical waves. Consider, for instance,
theith dipole; its equation of motion can be derived as [6]

d2Qi

dt2
+ ω2

i Qi + γi
dQi

dt
= −Fi(t) +

N∑
j=1,j �=i

Cij

(
1 − 1

2
Qiẑi · �∇

)
Dij

Dt2

Qj(t − |�ri − �rj |/c)
|�ri − �rj |

(2)

whereFi is an external stimulus, and the operator Dij /Dt2 is given as

Dij

Dt2
= zij

(
d2

dt2
+

3c

|�ri − �rj |
d

dt
+

3c2

|�ri − �rj |2
)

+ 2ẑi · ẑj
(

c

|�ri − �rj |
d

dt
+

c2

|�ri − �rj |2
)
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Figure 1. The conceptual layout of a many-dipole system.

with

zij ≡ [(r̂ij · ẑi )(r̂ij · ẑj ) − ẑi · ẑj ].

Here we ignore the static fields, as they only modify the resonance of the dipoles and can
be scaled into the natural frequency. We also make the approximation that the oscillation
amplitude is of the order of the dipole size. In equation (2),Qi is the oscillation displacement
of the dipole withωi being the natural frequency of the dipole andγi being the damping factor,
ẑi is the unit vector along the dipole direction of theith dipole,r̂ij is the unit vector pointing
from thejth dipole to theith dipole, and the coupling constantCij = qiqjµ0/(2πmi) with
qi andmi being the charge and mass of the dipole respectively. The dipoles and the radiated
waves are the system considered in this paper. Note that the damping effect can be caused by
various mechanisms, including ones such as the radiation and friction damping. The radiation
mechanism only converts the oscillation energy of the dipoles into energy of radiated fields
without energy loss. The radiation damping can be estimated asγ rad

i = µ0q
2
i ω

2/(12πcmi).
In contrast, dissipative mechanisms like the friction damping will convert the energy of the
system into heat, and therefore are the agents of energy loss. In the model presented by
equation (2), the factorγi can be adjusted to simulate situations with or without dissipative
mechanisms.

The physical meaning of equation (2) is clear. The left-hand side refers to the bare
motion of the isolated dipole. The presence of both the external stimulation and other dipoles
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contributes to the force on the right-hand side, driving the dipole to oscillate. The second term
in the summation on the right-hand side of equation (2) is the non-linear interaction between
dipoles. In the present paper, we assume that the oscillation amplitude of the dipoles is small
so that the non-linear interaction can be neglected. To explore the properties of the system
in an explicit way, we make a further reasonable simplification. We assume that all electric
dipoles are identical, having the same damping rate, the same mass and the same natural
frequencies. There is an arbitrary point source located inside the dipole cloud.

As a result of the above simplification, the governing equation for any dipole is reduced
to

d2Qi

dt2
+ ω2

0Qi + γ
dQi

dt
= −Fi(t) +

N∑
j=1,j �=i

C

|�ri − �rj |
Dij

Dt2
Qj(t − |�ri − �rj |/c). (3)

Equation (3) can be solved rigorously by numerical computation. In particular, we have
considered two random distributions of the dipoles. One is three dimensional. The number
density of the dipoles isn; the average distance between the dipoles is thusd = n−1/3. The
dipoles form a spherical cloud, i.e. the dipoles are located randomly inside a sphere with
radiusR = (3N/[4πn])1/3. We define a sizea such that as long as the separation between
dipoles is greater thana, equation (1) holds. Clearly,a can be regarded as a measure of the
range of a single dipole. The volume fraction covered by the dipoles is subsequently defined
asβ = N(a/R)3, which is a non-dimensional parameter and will be used in the computation.
With a fixedβ, the average separation between dipoles is calculated asd/a = (4π/[3β])1/3,
and the radius of the dipole cloud is measured byR/a = (N/β)1/3. The other random
distribution is two dimensional. We put all dipoles on thex–y plane, with all dipoles pointing
in the positivez-direction. We can also define a non-dimensional parameter representing
the density of the dipoles. Assume the range covered by a single dipole is of the order of
a size ofa. The area density of the dipoles isn. Defineβ as the area fraction taken by
the dipoles, that is,β = n(πa2). The average distance between dipoles is then computed
asd/a = (π/β)1/2. The dipoles are enclosed inside a circle with radiusR/a = (N/β)1/2.
For both cases, a stimulating point source is placed at the centre of the dipole clouds; thus
Fi(t) = f (t − ri/c)/ri .

3. Numerical results and discussion

We numerically evaluate equation (3) in the frequency domain. Applying the Fourier trans-
formation to both sides of the equation, we obtain

(
−ω2 + ω2

0 − iγ
)
Q̃i(ω) = −F̃ iω

2
N∑

j=1,j �=i

CGij Q̃j (ω)
eiω/c|�ri−�rj |

|�ri − �rj | (4)

with

Gij =
[
(r̂ij · ẑi )2 − 1

] (
1 − 3c2

ω2|�ri − �rj |2 +
3ic

ω|�ri − �rj |
)

+ 2

(
ic

ω|�ri − �rj | − c2

ω2|�ri − �rj |2
)

and

F̃ i = f (ω)
eiω/c|�ri−�rj |

|�ri − �rj |
where

f (ω) = 1

2π

∫
dt eiωtf (t) Q̃(ω) = 1

2π

∫
dt eiωtQ(t).
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In the computation, we adopt the following parametrization for equation (4). Define ˜ω = ω/ω0
andγ̃ = γ /ω0, and scale all length-based quantities bya and all frequencies byω0. In this
way, the non-dimensionalized version of equation (4) is written as

(1 − ω̃2 − iω̃γ̃ )Q̃i = −f̃
e(ik0a)k̃r̃i

r̃i
− C̃

N∑
j=1,j �=i

Gij
ei(k0a)k̃|�̃ri−�̃rj |

|�̃ri − �̃rj |
Q̃j (5)

in which

f̃ = f a

ω2
0

k = ω

c
k0 = ω0

c
k̃ = k

k0
r̃ = r

a
C̃ = ω̃2C/a.

The adjustable parameters in equation (5) areC̃, k0a, andγ̃ . The source spectrum of the
wave transmitted from the source is taken as unity. Equation (5) can be numerically evaluated
by a matrix conversion as a function of frequency ˜ω for different parameter values. After
solving forQ̃i , we writeQ̃i as

Q̃i = Aieiθi . (6)

ClearlyAi represents the oscillation amplitude, andθi denotes the relative oscillation phase
of the ith dipole. For each phase, we define a unit phase vector

�vi = cosθi �ex + sinθi �ey. (7)

We map the phase vectors onto thex–y plane. The starting point of each phase vector is
positioned at the centre of its corresponding dipole. Evidently, the phase vectors describe
the overall oscillation behaviour of the dipoles, and possible symmetries among these phase
vectors would indicate the degree of the coherence of the oscillation behaviour.

Numerical experiments are carried out to study the behaviour of the phase vectors and
the site-dependent oscillation amplitudes for all dipoles. The most significant discoveries can
be summarized as follows. For sufficiently large coupling constantC̃ and parameterβ but
small damping rate ˜γ , the oscillation of the dipoles is persistent for some frequencies slightly
above the natural frequency of the dipoles. Within this frequency range, the phase vectors for
all dipoles tend to point in the same direction, revealing a surprising coherence of the system.
Outside this frequency regime, there is no evident symmetry among the phase vectors. This
feature holds for both three and two dimensions and is valid for any random configuration of
the dipole clouds at the fixed values ofC̃, β, andγ̃ .

The above results are illustrated by numerical examples. Figure 2 shows the phase vectors
for both 2D and 3D cases for an arbitrary random realization of the dipole locations. The
number of dipoles tested ranges from 200 to 2500. For better visualization, it is sufficient
for us to show the results forN = 200. The parameters used in the two particular examples
are as follows: (1) 2D:β = 0.5, k0a = 0.02, C̃ = 0.001, and ˜r = 0.0001; (2) 3D:
β = 0.1, k0a = 0.02, C̃ = 0.001, and ˜γ = 0.0001. The signal generated at the source is
assumed to have the phase of zero. It is found that in either low- or high-frequency regimes,
the phase vectors for the oscillation of the dipoles point in various directions. There is no
apparent ordering in the phase vectors. This is shown by the two top and the two bottom
diagrams in figure 2. Within a small regime of frequencies for 2D and a relatively large range
of frequencies for 3D, there appears a global ordering in the phase vectors. As shown by the
two middle diagrams in figure 2 atω/ω0 = 1.326 for 2D and 1.32 for 3D, all phase vectors
point nearly in the negativex-direction. This indicates that all the dipoles tend to oscillate in
phase, but in the opposite phase to the source. The phase ordering phenomenon disappears
under the following conditions:
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Figure 2. Phase diagrams for the phase vectors for three frequencies. Left column: phase vectors
in 2D. Right column: phase vectors in 3D.
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Figure 3. The order parameter as a function of the reduced frequency.

(1) the dissipation exceeds a certain value; this is because sufficient dissipation will break the
balance between the energy conversion from radiation to vibration and from vibration to
radiation;

(2) the strength of coupling between the dipoles is too small;
(3) the density of the dipoles is not large enough.

Reducing either the dipole interaction or the density of dipoles will reduce the correlation
between the dipoles, so long-range ordering cannot be established. We also found that the
ordering cannot be induced when the coupling is exceedingly large. A reason may be that
when the coupling between dipoles is too big, the dipoles experience mainly the interaction
with nearby dipoles, so it is difficult to establish long-range correlation.

In order to explore the transition between the ordered and the random phase states depicted
by figure 2, we define an order parameter as follows:

' = 1

N

∣∣∣∣∣
N∑
i=1

�vi
∣∣∣∣∣ . (8)

It is easy to see that when all dipoles oscillate completely in phase, the order parameter is one.
In figure 3, we plot the order parameter as a function of the reduced frequencyω/ω0 for the
two parameter sets in figure 2. It is shown that in both 2D and 3D cases, the order parameter
rises to unity rapidly from the low-frequency side, then decreases gradually as the frequency
increases. The figure also implies that the phase ordering phenomenon is relatively easy to
observe in 3D. The phase ordering range decreases asβ decreases. Such a phase ordering
phenomenon only appears in a range of frequencies just above the natural frequency of the
dipoles.

The phase behaviour described in this paper also shows a similarity with the magnetic
phase transition. At low temperatures, the interaction between magnetic dipoles may overcome
the thermal fluctuation effect with the result that all magnetic dipoles tend to point in the
same direction, showing a magnetic order. When the temperature is increased, the thermal
fluctuation becomes more and more dominant and the ordering in the orientation of the
magnetic dipoles disappears gradually. In the present case, the main controlling parameter is
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the frequency of excitation. How do we observe the phase ordering phenomenon described in
this paper? In our opinion, the in-phase oscillation would imply a coherent electromagnetic
wave inside the system. Therefore, measuring the correlation of the wave at two spatial points
is one of the possibilities for discerning the coherent behaviour.
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